From Steklov to Neumann via homogenisation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Steklov-Neumann boundary value problems

We will study a class of Steklov-Neumann boundary value problems for some quasilinear elliptic equations. We obtain result ensuring the existence of solutions when resonance and nonresonance conditions occur. The result was obtained by using variational arguments.

متن کامل

Existence and multiplicity of solutions for discrete Neumann-Steklov problems with singular φ-Laplacian

is a forward difference operator with uk = u(tk), uk = u(tk+) – u(tk), tN = T and ∇ is a backward difference operator with ∇uk = u(tk) – u(tk–), t = , f : [,T]×R → R is continuous. In addition, the nonlinear difference equations play an important role inmany fields such as biology, engineering, science and technology where discrete phenomena abound, meanwhile, from the advent and rise of ...

متن کامل

Discrete Geometric Homogenisation and Inverse Homogenisation of an Elliptic Operator

We show how to parameterise a homogenised conductivity in R2 by a scalar function s(x), despite the fact that the conductivity parameter in the related up-scaled elliptic operator is typically tensor valued. Ellipticity of the operator is equivalent to strict convexity of s(x), and with consideration to mesh connectivity, this equivalence extends to discrete parameterisations over triangulated ...

متن کامل

Homogenisation with application to layered materials

In this paper we are concerned with the elliptic PDEs with highly oscillating coefficients which model the behaviour of composite linear elastic materials. Analytical expressions for the effective coefficients are obtained for the case of layered materials using the theory of homogenisation. Some properties of the homogenised materials are analysed. An efficient algorithm for the numerical dete...

متن کامل

Eigencurves for a Steklov Problem

In this article, we study the existence of the eigencurves for a Steklov problem and we obtain their variational formulation. Also we prove the simplicity and the isolation results of each point of the principal eigencurve. Also we obtain the continuity and the differentiability of the principal eigencurve.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2020

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-020-01588-2